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Steady longitudinal motion of a cylinder in a 
conducting fluid 

By HIDENORI HASIMOTO 
Department of Aeronautics, The Johns Hopkins University* 

(Received 4 September 1959) 

The steady motion of an infinitely long solid cylinder parallel to its length in 
a conducting fluid in the presence of a uniform magnetic field is discussed. Due 
to Alfvbn waves originating at the cylinder we find two opposite ‘wakes ’ parallel 
to the applied magnetic field. 

A formula which relates the total drag on the cylinder to the electric potential 
difference cSQ between the two undisturbed regions outside these two wakes is 
derived 

D/lSQI = ~ ~ P V C ,  

where pv is the viscosity and c is the conductivity of the fluid. 
The reduction to a classical boundary-value problem is made for the case of an 

insulating cylinder. 
Exact solutions are obtained for the case of a perfectly conducting or an in- 

sulating flat strip of semi-infinite width. These give a clear picture of the fields, 
especially in the transition region near the edge of the strip. 

The case of a strip of finite width is also discussed with special reference to the 
viscous and the magnetic drags, Df and 0,. We find that Df + +Dm, on a perfectly 
conducting strip, is equal to the viscous drag on an insulating strip for which Dm 
is zero. Precise values of these drags are given. 

1. Introduction 
There are only a few cases in magneto-hydrodynamics for which exact treat- 

ments are possible. A typical case is that of the rectilinear fluid flow in pipes 
under the uniform transverse magnetic field. The studies initiated by Hartmann 
(1937) for the flow between two walls have been extended by Shercliff (1953, 
1956) to the case of the flow in a straight pipe. Resler & Sears (1958) studied the 
case of a compressible fluid, neglecting viscosity. Also we should mention the 
work of Bleviss (1958) on the Couette flow between parallel walls. 

As far as the author is aware, problems in which there is an unlimited fluid 
flow outside a rigid cylinder, corresponding to the above cases, have remained 
untouched, except for the oscillating flow (Kakutani 1958) and Rayleigh’s 
problem (Rossow 1957; Chang & Yen 1959) for an infinite flat plate. In  a study of 
Rayleigh’s problem by the present author it was found that an inhomogeneous 
stationary field remains near the plate after a long period of time. This field has 
a boundary-layer structure in which the velocity goes from the speed of the plate 

* On leave of absence from Kyoto University, Japan. 
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62 Hidenori Hasimoto 

to a definite fraction of the plate speed sufficiently far away. This represents 
residual stationary disturbances from the passage of Alfven waves along the 
applied magnetic field, and suggests the existence of non-trivial steady solutions 
for the case of the longitudinal motion of a cylinder of finite cross-section, even 
though such solutions do not exist for the case of no magnetic field. In the mag- 
netic case, there will also appear interesting transition regions (B)  between the 
regions ( C )  influenced by AlfvAn waves originating at  the cylinder and the outer 
regions ( A )  which may not be influenced directly by these waves for large Hart- 
mann number N (figure 1). We will also derive the viscous and the magnetic 
drags on the cylinder. This is motivated by problems of practical interest, relating 
to the flight of slender bodies in space.* 
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FIGURE 1. Cross-section of cylinder in a transverse magnetic field. 

In  $2,  we will write down the fundamental equations and the boundary 
conditions for our problem assuming that the magnetic permeability is the same 
in the fluid and the cylinder. 

I n  $ 3, general characteristics of the problem which allow two ‘wakes ’ (C)  in the 
positive and the negative directions of the applied field will be discussed. We 
derive a simple formula which relates the drag on the cylinder to the electric 
potential difference between two undisturbed regions ( A )  outside these wakes 
(figure 1). These two quantities are also related to the strength of the wakes at 
infinity. 

We also show that the problem is simplified for the case of an insulating cylinder, 
since it reduces to a well-known boundary-value problem of mathematical physics. 

* Our solutions are also considered to afford limiting fields around a huge annulus 
rotating slowly about its axis of symmetry, which is parallel to the strong applied magnetic 
field. 
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As an example, the problem for a flat strip is considered in $ 3  4 and 5. We confine 
this study to the two cases of (I), insulating, and (11), perfectly conducting plates. 
In  9 4, we reduce our problem to two standard boundary-value problems for the 
Helmholtz equation, and we give precise numerical values for the viscous and the 
magnetic drags on the plate. 

In  $5, we give the exact solution of our problem for a strip of semi-infinite 
width. This solution affords a clear picture of the fields, especially in the boundary 
layer on the insulating plate and in the transition regions between the outer 
undisturbed region and the inner core region (which has almost the same velocity 
as the perfectly conducting plate and one-half the velocity of the insulating plate). 
Also we find the circuit of the induced electric current around this core. 

This behaviour is considered to be the limiting behaviour of the field near 
a cylinder of given finite width, a t  sufficiently large Hartmann number. Some 
consideration is given to this configuration including the case of a thin flat plate 
with finite conductivity. Comparison with the final steady solutions in Rayleigh’s 
problem with magnetic field for an infinite flat plate is made, and there is perfect 
agreement with a magnetic Prandtl number of 1.  

2. Fundamental equations 
We shall use m.k.s. units for the electromagnetic quantities and employ 

conventional notations. Then, the magneto-hydrodynamic equations for a steady 
incompressible fluid are 

(2.1) (v. v) v = - -v(P + i p ~ 2 )  + v ~ 2 ~  +f (H. V) H, 

v.v = 0, (2.2) 
(V.V)H = /cV2H+(H.V)V, K = l / (pl~o) ,  (2.3) 

V.H = 0, (2.4) 
E = - ~ V A H +  J/c, (2.5) 
J = VAH, (2.6) 

1 

P P 

in a Cartesian coordinate system (2, y, z), which is at rest with respect to the fluid 
at infinity. 

Let us consider the steady flow due to the uniform longitudinal motion, with 
velocity W, of an infinitely long cylinder with its generators parallel to the z-axis, 
in the presence of a uniform magnetic field of strength H parallel to the y-axis. 
We assume that the magnetic permeability p of the cylinder is the same as that of 
the fluid. The suffix i will be used to denote quantities in the cylinder (so that 
(2.1) and (2.2) should be replaced by viz = 0, vuiy = 0 and via -- W ) .  

With similar assumptions to those in Shercliffs treatment, we have: 
(1) all quantities are independent of z ;  
(2) the induced velocity and magnetic fields are parallel to the z-axis, i.e. 

vz = vy = 0, H, = 0, Hy = H ,  and tend to zero at infinity. Then, (2,l)-(2.4) 
reduce to two-dimensional equations in the x-y plane 

P = P m  - 4 p e 2  (2.7) 
v2w + m(ah/ay) = 0, (2.8) 
V2h+m(aw/ay) = 0, (2.9) 
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where w = v J W ,  h = rnH,/(a;uHW), (2.10) 

m = J(PH”P)/JV. = OP IHJ/2/(PW> (2.11) 

v2 = a y a X =  + a 2 / a y 2 ,  (2.12) 

and pais the constant fluid pressure at infinity. The electric current density J and 
electric field E are also parallel to the (x, y)-plane 

J = (a;uHW/m)j (2.13) 

and E, = pH W ( w  +j,/rn), E, = p H  WjJm,  (2.14) 

where j ,  = ahlay, j ,  = -ahlax. (2.15) 

Equations (2.8) and (2.9) must be solved with the boundary conditions 

w -+ 0, h -+ 0 at infinity, (2.16) 

w = 1 (2.17) 

h = hi, ahpn = (a/oi)ahi/an on 8, (2.18) 

on the surface of the cylinder S ,  

where a/an is the outward normal derivative on the cylinder, and 

hi = rnH,/(v,uHW) (2.19) 

is the magnetic field in the cylinder satisfying the induction equation (Maxwell’s 
equation) 

derived from (2.9) by putting w = 1 and replacing h by hi. 

we must satisfy the boundary conditions for t,he electromagnetic quantities 

V2hi = 0, (2.20) 

The condition (2.18) for h needs some elucidation. On the surface of the cylinder, 

H = Hi, E, = Eis, (2.21) 

E ~ ,  = PH w + (aH,,/aY)/~,, E ~ ,  = - (aHi,/ax)/qi. (2.22) 

where the suffix s denotes the tangential component around S, and 

If we take into account (2.10), (2.19)) (2.14)) (2.17) and (2.22)) we find that (2.21) 
is replaced by (2.18) or 

J, = Ji, = aH,/&, E:, = J,/v = Ji,/ai = (aH,pn)/c, (2.23) 

where Ei = Ei -pH A W = Ji/gi (2.24) 

is the electric field in the co-ordinate system moving with the cylinder. Equation 
(2.23) yields a kind of refraction relation for the electric current 

tan altan ai = a/gi, (2.25) 

where a denotes the angle between the current and the normal to S. 
Let us try to eliminate hi from the problem by replacing (2.18) by a single 

condition for h. Let P and Po be two points on s and N(P,; P) be the Green 
function in the Neumann problem for the domain bounded by s. Then 

(2.26) 
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where 5 is the total length of S and ds is the line element of 8 at P. In  the second 
integral of (2.26) we take the principal value. Also 

fs (ahi(P)/an) a5 = 0, 

because hi is a harmonic function. 
Introducing (2.18) into (2.26) and (2.27) we obtain 

(2.27) 

(2.28) 

(2.29)* 

Equation (2.28), in conjunction with (2.29), is the boundary condition to be used 
instead of (2.18) for general values of cri\cr. 

Taking into account the boundedness of h and ahpn for finite u, we can reduce 
the above equations to a more simple form for the following two extreme cases. 

(I) Perfectly conducting cylinder: cri --f 00 

ah/& = 0 (orj, = 0) OIJ. X. (2.30) 

This follows most readily from (2.23) because E' = 0 in the cylinder. In  this case 
the electric current in the fluid at the cylinder is perpendicular to S. 

(11) Insulating cylinder: cri -+ 0 

h = hi = const. in and on the cylinder (2.31) 

with (2.32) 

If the cylinder is symmetric with respect to some (x,z)-plane hi is zero (see 
(3.23)). For the general asymmetric case, or if there is more than one cylinder, 
(2.32) seems to be necessary to determine h, uniquely. The result (2.31) is evident 
when we remember that the electric current must be parallel to the cylinder and 
that h is the stream function of j. 

3. General properties of the fields 
Before entering into specific boundary-value problems, we will discuss some 

properties of the solutions of (2.8) and (2.9), satisfying the conditions at infinity 
(2.16). 

Eliminating w or h we obtain 

(v2--a/aY) (vz+ma/ay) (W or h) = 0, (3.1) 

which yields w=$+i-$- ,  h =  - #  + +#-, (3.2) 

where (V2 T ma/ay) #* = 0. (3.3) 

* (2.29) may be deduced more fundamentally from VAE = 0, i.e. E,ds = 0, if we use 

Fluid Mech. 8 

(2.14) and (2.17). 

5 
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Introducing 

we get (V2-k2)$* = 0. 

4* = $* exp ( T  hY), 
where k = +m, 

Equation (3.3) is well known as the Oseen equation (Lamb 19 2), which suggests 
the existence of ‘wakes ’ of vague parabolic shape along positive and negative 
y-axes at a great distance from the obstacle. This is shown by the general solution 
satisfying (2.16) 

a0 

$A = ehkvRe C A,, K,(kr) ein(OFJn) (3.7) 
n = O  

with B,  = Re A,,, 
n=O 

(3.7‘) 

where K ,  is the modified Bessel function of order n, and (r,  0) are the cylinder 
co-ordinates x = rcosI), y = rsin0. (3.9) 

Notice that r (  1 
These wakes represent residual stationary disturbances from the passage of 

Alfvkn waves along the k y-axes (0 = i- 477) in the presence of the combined 
action of viscosity and conductivity of the fluid. In  these two ‘wakes ’, given by 

sin 0) = const. are the parametric equations for a parabola. 

so that +pH: = ( V / K )  &V2, (3.11) 

i.e. there is a simple relation between the induced magnetic energy and the kinetic 
energy of the fluid, and the electric current flows along the lines w = const. 

We now show a simple relation between the drag per unit length of the cylinder 
and the difference 8 0  between the electric potential at x = + co and x = - co (for 
fixed y). Except for a constant, the electric potential CD is a single-valued function 
of position 

[CD], = - $ E,ds = 0, (3.12) 
C 

for an arbitrary contour which may go through the cylinder. In  particular, 
--I 

8@ = CD(-oo,y)-CD(co,y) = -1im [nrEodO = -1im ( rE,d0, (3.13) 

where Eo is a tangential component of E along a large circle x2 + y2 = r 2  given by 

E,/(pH W )  = - w sin 0 +-jo/m = - w sin 0 - (ah/ar)/m, (3.14) 

according to (3.14) and (2.15). Introducing (3.2) and (3.7), we obtain 

(3.15) 

(3.16) 
Since 8CD is single valued, 

B + -  - B - = B .  
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On the other hand, the drag D per unit length of the cylinder is obtained by 
integrating the mechanical stress r,, and the Maxwell stress Tn, along an arbitrary 
contour C around the cylinder, i.e. 

(3.17) 

Choosing as C the above-mentioned large circle, and making use of (3.2)-(3.7) 
and (3.15)-(3.16),  we get 

D / ( p v W )  = lim m Yzf l  r($+ + $-) d6 = 477B. (3 .18)  
r+w J o  

Comparison of (3 .15)  and (3 .18)  yields 

or 

D / ( p v W )  = 2m&D/(pHW)  = 47rB, 

D = 2 J ( p w )  80 x sgn H .  

(3 .19)  

(3 .20)  

This is the final result, the relationship between drag and electric potential 
difference. 

Before concluding this section, we add some remarks on the case of the insu- 
lating cylinder. Here, we can simplify the analysis by defining functions F+ by 

$h* = $( l  Thi)F*. (3.21) 

The functions F* are solutions of (3 .3 )  with conditions 

F+ = 1 on S and J'+ = 0 atinfinity, (3.22) 

and thus satisfy all conditions except (3 .32) .  This remaining condition is easily 

(3.23) 
satisfied by taking 

h, = (Q+-Q-)/(Q++Q-), 

where Q+ = - f (aF*/an)cls. (3.24) 
S 

Then the viscous drag per unit length Df = D (there is no magnetic drag in this 
case) is given by 

r 
(3 .25)  

In  the case of the symmetric configuration mentioned at  the end of 5 2,  in which 
S is symmetric with respect to a generator (as in the case of an elliptic cylinder), 
(3 .23)  shows that hi is zero because Q+ is equal to Q-. Then (3.25) reduces to 

D / ( p v W )  = Q = Q+ = Q-. (3.26) 

Thus, the problem for an insulator has been reduced to a more familiar boun- 
dary-value problem of the type (3 .3 )  and (3 .22) ,  (or to (3.27) and (3.28) below), 
and these solutions are easily transferable to our problem. 

5-2 
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For example, we consider the case of the flat plate 1x1 < a, y = 0. Putting 
$+ = $$ in (3.6) (i.e. h, = 0, F+ = q5 exp (ky) in (3.21)), equation (3.3) yields 

(3.27) 
a Helmholtz equation for q5 

This leads to the same boundary-value problem as in Rayleigh's problem 
(Hasimoto 1951) for a non-conducting h i d ,  since 

4 =exp(-ky) = 1 for y = O  and 1x1 < a ,  (3.28) 

and $ = O(e-k') as r-fco. (3.29) 

We will study this case and the case of a perfectly conducting plate at some 

(V2- k2) $ = 0. 

length in the following sections. 

4. Flat plate of finite width: 1x1 G u, y = 0 

Introducing 4,  determined by (3.27)-(3.29), into (3.2) we get 

w = $ cash ky, 

h =  -$ sinh ky = - w tanh ky, 

where we have used the symmetry of q5 with respect to y = 0 

$(X,Y) = q5@, - y), i.e. $+ = 6-. 
In  particular, at y = 0, 

(4.3) 

w = q5 (=  1 for 1x1 < a ) ,  h =  0, (4.4) 

w = awpy = aq5py (=  o for 1x1 > a),  (4.5) 

j, = ahlay = -k$, j, = -ahlax = 0. (4.6) 

Equations (4.6), (2.14) and (2.15) show that the electric current density and the 
electric field on both sides of the insulating plate are given by 

J,= -4 ~ , u H  W = - aEx = aEL, Ell = EL = 0 (4.7) 

exactly, since w = $ = 1 on the plate. The negative sign of aEx represents the 
electromotive action of the plate, and assures the satisfaction of the condition 
(3.12). 

Let us proceed to the case of a perfectly conducting flat plate. We put 

where 

The function $ is antisymmetric with respect to y = 0 

Then, from (3.2), 
Ilr(x, Y) = - $k -Y)- 

U J  = $ cosh ky - $ sinh Icy, 

(4.10) 

(4.11) 

h = - 4 sinh ky + $ cosh ky. (4.12) 

W ( Z , O )  = # ( G O ) ,  (4.13) 

h(x, 0) = $(z, 0) ( =  0 for 1x1 > a).  (4.14) 

In particular 
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According to (4.13) we may use the same function + as that in the insulating case. 
Also, on the plane y = 0, 

o = awlay = a+lay-k$ ( =  o for 1x1 > a) ,  (4.15) 

jg = -ahlax = -a$/ax ( = o Gr 1x1 > a). (4.17) 

Taking into account (2.16), (2.17), (2.30) and (4.17), we get the boundary condi- 
tions for $ 

a$py = k for 1x1 < a, y = o (4.18) 

$ =  O(e-l”) as r+m. (4.19) 

We have now reduced the two flat-plate problems to two kinds of standard 
boundary-value problems involving the Helmholtz equation for 4 and @. 

For the sake of simplicity, we shall consider two important quantities from the 
practical point of view, i.e. the skin frictional drag Bf(x) and the magnetic drag 
D,(x) at a point of the plate, denoting by suffixes I and C corresponding quantities 
for the insulating and perfectly conducting cases, respectively. The total drag 
obtained by integrating these drags is intimately related to the induction poten- 
tial difference &@ or wake strength B according to (3.19). 

j, = ahlay = - k+ + a$lay, (4.16) 

We obtain from (4.5) and (4.4) 

D,,(x)l(pvw) = - 2w(x,  + 0) = - 2(a+/ay)g=+o (4.20) 

and Dm,(x) = 0, (4.21) 

applying (3.17) on the surface element of the plate at  x. In  the same manner 

qc(x)/(Pvw) = - w + / a Y ) y = + O  + m$(x, + 0) (4.22) 

and Dm,(x)l(PvW) = - am$(x, + 0) (4.23) 

from (4.15) and (4.14). The drag D,,(x) is simply the force acting on the electric 
current h(x, + 0) - h(x, - 0)  in the perfectly conducting plate. Equations (4.30)- 
(4.33) afford an exact relation between the two cases 

D,,(x) = D,,(x) + &D,,(x) or D,(x) = D,(x) - *D,,(x). (4.24) 

The solutions of our two plate problems have been discussed by many authors 
in many branches of mathematical physics. The following expansion formulae for 
small and large values of M are obtained from their work 

4 
- - 2M + f! - - [K,,(M) - K O 2 ( B ) ]  + O(e-2-If), 

7T 

(4.26) 

(4 .26)  
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M2 
16 

- cos 2a + - {(Q ++I cos 2a -A cos 4a> -$(a cos a, + 0)  = 

( ( Q 2 + ~ - Q + $ ~ ) ~ o s 2 a - ( ~ Q + & )  C O S ~ ~ + & C O S ~ ~ ) + O ( M ~ )  , 1 M 4  
256 

-_ 

(4.27) 

1 M2 M4 
(Q2+@+&)+O(Ms)  . (4.28) 

8 
= 4M - 4 + - [Ko l (M)  + Ko2(M)]  + O(e-2M), (4.28’) 

(4.29) 

!2 = -y-log(M/8), y = 0.5772 ...( Euler’s const.), (4.30) 

7r 

where M = ma = 2ka = ,,/{r/(pv)},u IHI a, 

e-M I--+-- 345 ...). Ni& ( 8M 128M2 
(4.32) 

We have used a result by Hasimoto (1951) for (4.25), and transformed Levine’s 
result (1957) for Rayleigh’s problem into the convenient form (4.26‘)’ where the 
first two terms have been obtained by Howarth (1950) and by the author 
(Hasimoto 1951). Equation (4.27) has been calculated by use of the integro- 
differential equation 

or an integral equation 

K,(k I x - zo I ) $(xo) dx, = - (7r/k) ( 1 - A cosh kz) (4.34) 

for $(z, 0 )  and an unknown constant A subject to the condition 

$( k a, 0) = 0, (4.35) 

which is found to be essentially the same as that discussed in diffraction theory 
(Bowkamp 1954). Equation (4.28’) was derived by use of Levine’s technique 
(1957), initially applied to (4.26’), although the first two terms of (4.26’) can be 
easily determined from the results in the next section, where we also give the 
form of (a$/i3y)v=o and $(x, 0)  for large M .  Table 1 and figure 2 give the numerical 
values of Df and Dm calculated by these formulae. 

We notice the following points. 
(1) The matching of the two types of approximate formulae, especially for D,, 

is good for intermediate values of M .  
( 2 )  BfI > Dfc, but 

D, = Df, < (D,+Dm)c = D,. (4.36) 
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FIQURE 2. Total drag for the finite plate. 

M 

0.01 
0-05 
0.1 
0-2 
0.4 
0.6 
0.8 
1.0 
1-2 
1.4 
1.6 
1.8 
2.0 
2.4 
2.8 
3.0 
3.2 
3.6 
4.0 

0.940 
1.395 
1-64 
1.98 
2.45 
2.79 
3.04 
3.24 
3-39 
3.5, 
3.5, 
3.6, 
3.6, 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 

- 
- 

- 
3.3, 
3.4, 

3.7, 

3.6, 
3.6, 

3.84 
3-90 
3.92 
3.95 
3.96 
3.97 

Eqs. (4.28), (4.28') 
0.00016 - 0.940 
0.00390 - 1.399 
0.0167 - 1.66 
0.062 - 2.04 
0.24 - 2-69 
0.53 - 3-32 
0.91 - 3.96 
1.38 - 4-62 
1.9, 2.0, 5.30 
2.5, 2.5, 6.0, 
3.1, 3.1, 6.7, 
3.8, 3.7, 7.5, 

- 5.89 - 
7.39 - 

- 8.15 - 

8.92 - 
- 10.48 - 
- 12.05 - 

- 4.4, - 

- 

- 

- 
- 
- 
- 

- 
- 

- 
- 

5-3, 

7.4, 

6.0, 
6. 74 

8.2, 
9.74 

11-29 
12.07 
12.86 
14-44 
16.03 

TABLE 1. The total drag for a finite plate. 

0.940 
1.397 
1-65 
2.01 
2.57 
3.05 
3.50 
3.93 
4.35 
4.76 
5.17 
5.58 
5-99 
- 
- 
- 
- 
- 
- 

I 

- 
- 
- 
- 
- 
- 

3.93 
4.35 
4-76 
5.17 
5.58 
5.99 
6.79 
7.60 
8.00 
8.39 
9.20 

10.00 
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(3) For small M ,  D,, is small since it is O(M2) .  In  fact 

~,,/(pVw) = + 7 m +  0 ~ 4 )  (4.37) 

and, indeed, is so small that D, and D, are given by the same formula 

D, = D, = 2n/Q + O ( M 2 ) .  (4.38) 

-1  0 

xia 

FIGURE 3. Non-dimensional vorticity 
distribution on the plate. -, Insula- 
tor. mc: - -  --, M = 1; ---, 
A !  = 5 ;  - - - - 41 = 10. 

FIGURE 4. Electric current in the 
perfectly conducting plate. 

This is explained by the fact that the current in the plate is so small that its effect 
on the field in the fluid is negligible.* 
(4) For large M (e.g. M > 3), the following formulae give good approximations 

D,/(pVW) = 2M + 2, (4.39) 

D f c / ( p ~ W )  = 4, D,,/(PvW) = 4M-4.  (4.40) 

Figures 3 and 4 show, respectively, the vorticity w on the plate and the electric 

* We can easily show that (4.38) is valid for an arbitrary shape of cylinder cross-section 
and arbitrary ratio of ui/u, if we take aa *a the electrostatic capacity c of this shape. The 
analogous results have been derived for Rayleigh’s problem in non-conducting fluids, by 
Batchelor (1954) and by the author (1954). We note that #+ and 4- are given by 

Zq5* = 1 - 4 log (ZZ)/[ - y - log (imc)] + O(kr), 

for small values of kr, where the domain outside of the cylinder is conformally mapped onto 
the region outside the unit circle 2Z = 1 in the complex 2-plane, by use of the mapping 

current A(:,(.) in the perfectly conducting plate. 

function 1 m 

n=1 
z + i y = c  2+ c,z-n . 

Then, (3.2) and (3.17) yield (4.38). 
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5. Flat plate of semi-infinite width 
Let us consider the case of a flat plate of semi-infinite width at greater length, 

inasmuch as this case has simple exact solutions and affords an approximate, but 
clear, picture of the field for the finite plate at large M .  

For convenience, we introduce the parabolic co-ordinates (t, 7) 

kx = 5 2 - 7 2 ,  ky = 2&J, -co < g < al (7 2 O ) ,  (5.1) 

so that kr = t2+?f, (5.2) 

as suggested by Lamb’s study (1932) of the sound diffraction problem. The 
coordinate q vanishes on the plate (0 < x < co, y = 0) and the coordinate 5 has 
opposite signs on the two opposite sides of the axis of x, and is zero on the negative 
x-axis (figure 5). 

H 

E = E,>O 

5 = -5, <O 

H 
FIGURE 5 .  Parabolic co-ordinates. 

Then (3.3) is transformed to 

a 2  a 2  

which is satisfied bv 

where Eo is the complementary error function 

Eo(c) = erfcc = 1 -erf< = - :m Sp e-52 dc. (5.5) 

We can construct from (5.4) two solutions of the Helmholtz equations which are 
~ 

symmetric and antisymmetric with respect to y = 0, taking into account (3.4), 
(3.6) and (5.1): $1 = i [e”u ~ ~ ( 7  + 5) -t e-kvEo(r - 5)1. (5.6) II. 
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Fortunately, these satisfy all the conditions required for q5 and @ in the previous 
section, if, by considering the infinite extent of the plate, we replace 1.1 < a by 
0 < x < co and r -+ 00 by T,I + co in (3.29) or (4.19). We can easily establish this 
solution by taking into account the symmetry of E0(y - c )  and Bo(7 + c), and the 
results 

kW 

I I  I 

kX 

FIGURE 6. Field for the insulating semi-infinite plate. 
- - - -, w = const.; -, h = c0-t. 

Let us proceed to the discussion of the exact solutions constructed in this way 
for the two extrerne cases. 

5.1. The insulating plate 

From (4.1), (4.2) and (5.6) we get 

(5.10) 

Figure 6 shows the distribution of the isovels (w = const.) and electric current 
lines h = const. We have only to consider the positive y-plane since w is symmetric 
and h is antisymmetric with respect to y = 0. 
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From this analysis, the interesting points are as follows. 
(1) There is a boundary layer on the plate, as shown by 

75 

W 
lim = $(e-my k 1) (5.11) 

for fixed positive values of 7. It is interesting that the values of w and - h tend 
to 4 in a wide region outside this boundary layer. 

(2) There is a transition region of vague parabolic shape for large ky between 
the above-mentioned region (core) and the undisturbed region represented by 
7 -+ a. This also is shown by (5.8) and 

W =  - h + $  + = a E O ( C ) + w J ( k r ) )  as f ; ,T - ,W,  (5.12) 

where 6 = T - c, Y = $k[(x/C)z - (6/4”3. (5.13) 

We note that the current lines coincide with isovels for large ky, where (3.10) is 
valid. On the line x = 0 ( f ;  = T ) ,  we get 

&a, h 

(5.14) 

The value a is the mean of their values; -& in the core, and zero in the undisturbed 
region. This region is rather narrow compared with the width of our plate and is 
shifted outward to the undisturbed region for moderate values of ky. We might 
call this region a shear layer. 

(3) For HW < 0, the main part of the electric current comes from ky = 00, 

along isovels in the shear layer, and go into the other isovels in the plate boundary 
layer parallel to the plate for large kx. For HW > 0, this direction is reversed. 

(4) In  the vicinity of the edge, isovels take parabolic shapes given by 

1 - w ff 2?/qJn. (5.15) 

Here, the electric current lines are almost parallel to the plate 

h -  -ky, (5.16) 

corresponding to (4.6), (4.7) and (5.11). 

5.2. The perfectly conducting plate 

Introducing (5.6) into (4.11) and (4.12) we get simple expressions 

1 = * [Eo(T - c )  Eo(T + 513. (5.17) 

This equation could have been constructed from (5.4) directly. Figure 7 shows the 
field in this case. We can notice the symmetry between w and 1 - Ihl with respect 

- h  

to the y-axis (5.18) 

derived from (5.17), (5.7) and (5.1). 
We may remark that: 
(1) There is no boundary layer on the plate except near the edge kx < 1,  and 

the fluid is moving with almost the same speed as the plate for a wide core region, 

(5.19) as shown by lim UI N - lim h = 1 
E+ m c+ m 

for fixed 7. 
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(2) The strengths of the vorticity and the current in the shear layer have values 
twice those of the insulating case, and the shear layer is more distinct than that 
case. This is shown by (5.8) and 

w N -12 - +E,(y) for $,q  >> 1. (5.20) 

In the distinct centre of this layer (x = 0)  w and - h have values which are the 
mean of their values in the core and their values in the undisturbedregion, i.e. +. 

kY 

5 

- 4  0 
kx 

FIGURE 7. Field for the perfectly conducting semi-infinite plate. 
- - - -, w = const.; -, h = const. 

4 

(3) The electric current from the shear layer enters the plate perpendicularly, 
almost a t  the edge of the plate, and flows in the plate to kx = +a, if HW is 
negative. This electric current and the induced magnetic field on the plate are 

(5.21) 

(5.22) 
for y = + O .  

given by 
j ,  = - o = J(k/(nx)) exp ( -  kx), 
- h = 1 - E,,(c) = erf (J(kx)). 

Equations (2.13), (2.15) and (5.22) show that the total electric current 4 in the 
plate is given by 

q / ( c ~ p H W )  = m-l[h(x, +O)-h(x, -0)l = - (2/m) erfJkx (5 .23 )  

which grows from zero at x = 0 to 2 J(pva) W at kx = co gathering all the electric 
currents from the fluid (for HW < 0 )  (figure 4). J(pva) W is equal to the total 
current in the upper shear layer m-l~pHW[h((,=-,, - h(T=+mJ. 
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(4) In  the vicinity of the edge, isovels and current lines form orthogonal 

1 - w - 2r/Jn, h N - 2[/,In, (5.24) parabolic nets 

which should be compared with (5.15) and (5.16). 

6. Discussion for the cylinder of finite width at large Hartmann number 
The quantities on the plate y = 0 derived from the previous section are simple 

expressions and are useful in the rest of the paper. They are given in table 2 ,  
wherein the lower sign of T denotes the value for y = - 0 (the under side of the 
plate). The following notation is also used in Table 2 .  

(I) Insulator (11) Perfect conductor 

x < o  x >  0 x < o  x> 0 

@ i a q - c Q , O )  1 
- (2Ez-Eo)<0 

uHW m 

1 EO 

T (k+4J(J(kIX)E,) 0 
0 0 

- k  -&/I 7rx j )  e-klzl 

Q Eo +jzlm 
0 0 

0 0 

- - ( l + m x )  -(4Ez-Eo)< 0 
1 1 

2m m 
1+m;t.-4Ez 0 

0 0 

1 

T J(kJ(7rx)) ck3 
0 

1 
- o/m 

T (1-Eo) 

-6J 

- X  

2 - 2E0 
2mx- 2 - (8E, - 4E0) 

TABLE 2. Quantities on the semi-infkite plate. 

Equations (6.1)-(6.3) are tabulated in the book of Carslaw & Jaeger (1947). 
D,, is the total frictional drag on the plate between o and x, and D,, is the corre- 
sponding magnetic drag 

(6 .2 )  

D,, = - Zmpv W [" h dx. 
J o  

Except for 0 and D we can separate the quantities on the plate into two terms: 
one which is constant everywhere (e.g. k in the w term) and the other which is 
significant only at  the edge and tends to zero rapidly as kx -+ co (e.g. ,,I(k/x) El, in 
the w term). If we limit our plate by another edge at x = 2a, and superpose the 
contribution due to this edge, we may obtain a picture of the field near the plate of 
finite width 2a at large Hartmann number M = ma. In  the quantities D and 0, 
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the integrals of w ,  h and E,, the contributions due to an edge appear as constants. 
For example, the total frictional drag and the total magnetic drag for the finite 
plate are 

in the case of an insulator, and 
Dfz / (pvW)-2M+1+1  = 2 M + 2 ,  Dmz=O (6.4) 

Df c / ( p ~ W )  - 2 + 2 = 4, D,,/(pvW) = 4M - 2 - 2 = 4M - 4 (6.5) 
for a perfect conductor, where we have added to Df, 2a etc., as they appear in the 
table, the contributions due to the presence of another edge. We have neglected 
also small terms like En. Equations (6.4) and (6.5) are identical with (4.39) and 
(4.40). We can also show the validity of (3.20), (4.7), (4.24), etc., by the general 
theory, using Table 2 and the above argument for the edge correction. For 
example 

(6.6’) 

(compare this with (3.20)). 
From these results and the results of the previous sections we may easily build 

up a picture of the field at large but finite M .  In  the following, we proceed to 
show that our picture is applicable generally to the field around a cylinder 
(1x1 < a, f-(x) < y < f+(x) f,(x) = O(a))  at extremelylarge 1M = ma, if we are not 
concerned with the fine structure of the field (e.g. at an edge x = a on 8). We may 
suppose, according to (2.11) that the fluid has low viscosity and high conductivity 
and that the applied field is strong. We also assume HW to be negative for 
convenience. 

6.1. Perfectly conducting cylinder 

In  this case the cylinder carries magnetic lines of force frozen in it corre- 
sponding to the induction current in the x-direction accompanying its motion. 
This movement of magnetic lines will drag the fluid in the region 1x1 < a, y < m, 
(i.e. the core) with the same velocity as the cylinder, since the fluid is highly 
conducting. Then, putting m = co in (2.14), we find that the electric field in this 
region is Ex = pH W ,  E, = 0. Taking into account (3.13) and the fact that E = 0 
in the undisturbed region 1x1 > a, we find that (6.6’) is valid in our general case. 
The viscous drag is also negligible. 

We may note that this picture is perfectly consistent with the fundamental 
equations and boundary conditions (2.8), (2.9) and (2.30) in the limit of m -+ 00, 

except for the conditions at  y = co and 1x1 = a .  By adding to this picture 
wakes ((3.7’), (3.15) and (3.16)) for y-+00,  and shear layers of thickness 
O ( J ( k y ) / k )  = O ( J ( y / m ) )  (see (5.20)) due to the presence of the viscosity and the 
finite conductivity, we can satisfy all the conditions required. Taking into account 
(3.2), (3.10) and w = 1, valid in the core, we find that h = 1 in the upper core. 
According to this result, the electric current in the core is negligibly small com- 
pared with the current in the cylinder starting from an edge a t  x = - a and goes 
into the other edge at x = a,  owing to the assumption ci/c = co. We find that this 
current forms a closed circuit around the core. This circuit consists of the cylinder 
(playing the role of a motor with terminals at  x = f a) ,  shear layers (across which 
h jumps from 0 to 1) and wakes at  infinity (where current lines coincide with 
isovels elongated in the direction of the applied field). 

8@z/(,uuHW) = a+ l /m = Dz/(2mpvW), (6.6) 
8@,/(pHW) = 2a = D,/(2mpvW) 
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6.2. Insulating cylinder 

In  this case there is no induction current in the cylinder itself. However, the 
electric current is induced in the fluid dragged by the cylinder through viscosity 
and confinedin 1x1 < adue to thestrongmagnetic 
field. This current will form surface currents of 
thickness O( l/[m cos (n, y)]) (Shercliff 1953) from 
x = -a  to x = a (figure 8). This surface current 
will retard the velocity of the fluid and will yield 
a boundary layer in which the velocity changes 
from the speed of the cylinder to a core speed 
which is a definite fraction of the cylinder speed. 
The field near the edge 1x1 < a will be compli- 
cated in general, on account of the interaction 
of the boundary layer and shear layer, and will 
be inflated a little outwards. The general features 
of the field will be the same as those in the case 
of a perfect conductor (or the case of a plate in 
$ 3  5 and 6), if we consider the boundary-current 
layer to be included in the cylinder. 

4+= i 

@ 
0 

FIGURE 8. Field near the insula- 
ting cylinder for extremely 
large M. 

We may show that these features are consistent with the fundamental equa- 
tions as m --f co, if we take as the quantities in the core 

w = + ~  h = T i ,  (6.7) 

which yield also (6.6), if we neglect small terms o(ma) and take into account 
(2.14) and (3.13). It is convenient to start from (3.3) and (3.22). Letting m +- co, 
we get 

q5+ = $(l -hi) for co > y 2 f-(x) and 1x1 < a, (6.8) 

= 0 for y = co, or 1x1 > a. or y < f-(x) (6.8') 

(approximation of geometrical optics). The field given by (6.7) (the field in the 
upper core region and on the cylinder) is connected with the outside undisturbed 
region given by (6.7) through the wake, the shear layers, and a boundary layer 
q5+ = +( 1 - hi) exp [ - mn I cos (n, y )  I ]  on the lower surface of the cylinder (figure 8). 
A similar solution is obtained for 4- and yields, with $+, (6.7). By taking a rect- 
angular circuit around the cylinder in equation (3.12), we find that hi is o(ma).  

6.3. A plate of small thickness 2b (kb < 1) andJinite conductivity 

The fields in the core obtained so far seem to be independent of the finite width 
of the cylinder. The dependency on the finite conductivity is also not clear. As an 
illustration, we consider the region of the plate far from the edge, where every 
quantity will be independent of x. In  this case N(Po; P) of (2.26) is given approxi- 
mately by 

Then h(P0) = * ( V l b / 4  ( W Y ) P 0 ,  (6.10) 

NRo;  P) - 4 W P  - xo) I Y P  - Yo I * (6.9) 
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approximately, where the first integrals in (2.28) and (2.29) vanish by symmetry. 
Equation (6.10) canalso be obtainedfrom (2.18) and (2.20) byassumingsuniform 
current, i.e. constant ahi/i3y, in the plate and putting hi(Po) equal to b(ah,/ay). We 
find that (4.11)-(4.17) and (4.24) are also valid in this case. 

According to table 2, (6.10) is satisfied for large kx by taking a weighted mean 

(6.11) 
of I and I1 ( c )  

where /3 = c i k b / c ,  (6.12) 

if we put the x-axis on the upper surface of the plate. Then, 

( 1 + P ) h  = & + @ T I ,  ( l + P ) w  = wI+PwII, 

9 +e-mu] (mx-tm, y > 0). (6.13) 
1 -"h) = 2 i l + P ) [ l + - P -  

which gives for the fields in the core 

wcorc = -h'corc = +2P) / ( l+P) .  (6.14) 

Our perfectly conducting infinitely thin plate is the limiting case in which b is very 
small but ci/c is extremely large (figure 9). 

i 1 I 1 

0 20 

FIGURE 9. Core velocity wCOTe vs (ai/a) kb. 

/3 = (ui/u) kb 

Let us compare these solutions with the corresponding final stationary solu- 

Gw = 1 + 2 / 3 + , / ( ~ / v ) e - ~ y ,  - G , / ( v / ~ ) h  = 1+2/3-ee-mY (6.15) 

where G = 1 + J (K /v )  + 2P, (y > 0). (6.16) 
We find that: 

(1) In general, the two results do not coincide with each other, although they 
do not contain the width of the plate explicitly. This discrepancy should be 
reduced to the existence of shear layers in our problem. These layers originate at  
the edges of the plate and yield finite jumps of field quantities. In  the case of 

tions in Rayleigh's problem for an infinite flat plate 
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Rayleigh's problem we have no such edges in space, although the time t = 0 
might play the same role. 

(2) It is a remarkable fact that these two results coincide, if the magnetic 
Prandtl number is 1, i.e. if Y = K. This is the case in which equipartition of the 
induced magnetic energy and the kinetic energy of the fluid is attained far from 
the plate (see (3.1 1)). This is the same feature as that of the wave of finite ampli- 
tude in the non-viscous and perfectly conducting fluid (Walh  1942). 

In  conclusion the author expresses his cordial thanks to Prof. F. H. Clauser and 
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